
Data Galaxies: A Common Space for
Data Manipulation and Visualization

Sergejs KOZLOVICS 1,2 and Peteris RUCEVSKIS
Institute of Mathematics and Computer Science, University of Latvia

Abstract. Heterogeneous data in various formats are everywhere and can bring
certain benefits if we could analyze them. Although certain tools exist to manipulate
and analyze data, it is very difficult to ensure inter-operation between them to be
able to use the whole range of their capabilities. Data galaxies is a new concept that
is intended to provide a common space for different kinds of data manipulations
and visualizations, where existing tools can be joined in together to participate in
data manipulation flows for obtaining the desired result. The power of the approach
is demonstrated by several use cases.

Keywords. data galaxies, data visualization, data manipulation, query, data
transformation

Introduction

In the Information Age data management is no more a prerogative of IT professionals.
End users now have access to various kinds of personal data such as data about bank
transfers and credit card operations, purchases with loyalty cards, public transport smart
card usage, mobile service usage, etc. Besides, there are public data like the data found
in DBPedia and Europeana. Modern users are aware of those data and are able to query
and analyze them to some extent. Companies storing user’s data usually provide online
tools for data querying and visualization, but these tools are tied to a particular domain
(and even to a particular company) and their capabilities often are limited. For instance,
it is unlikely that having an excerpt of the credit card operations for the last month, the
banking system would be able to infer how much money was spent for sweets. Even
when it was possible (e.g., by specifying that payments to “Laima” shops are for sweets),
the user could still go further and ask: Is there a relationship between the day, time, and
money spent to sweets? Probably, the user should avoid being near sweet shops during
certain time of the day.

To show the need for advanced manipulations on data and limitations of existing
approaches, we extend our scenario. Now, the user may be interested in data concerning
sweets from all bank accounts of his family members. Obviously, online banking sys-
tems are not usable here because of the competition between banks, legal issues on data
privacy, and for technical reasons. Thus, the user (the head of the family) needs to obtain

1Corresponding Author: Sergejs Kozlovics, Institute of Mathematics and Computer Science, Room 420,
Raina blvd. 29, LV-1459, Riga, Latvia; E-mail: sergejs.kozlovics@lumii.lv.

2Supported by ESF project 2013/0005/1DP/1.1.1.2.0/13/APIA/VIAA/049

235

DATABASES AND INFORMATION SYSTEMS
H.-M. Haav, A. Kalja and T. Robal (Eds.)
Proc. of the 11th International Baltic Conference, Baltic DB&IS 2014
TUT Press, 2014

the data from all the family members (who may be using different banks providing the
data in different formats) and use external tools to unify and merge those data. However,
the tools suitable for data merge may not be suitable for queries or visualizations. Thus,
the user needs another tool to query the data and, possibly, one more tool to visualize the
result (e.g., as a pie chart). The scenario becomes even more complicated, if other family
members are wishing to filter their data to hide their expenses except expenses for the
sweets.

Next month, the user (the head of the family) may want to repeat the process to see
how his family’s expenses for sweets have changed. Here, a capability of storing user’s
actions to obtain the desired pie chart from raw data would come in handy.

The example above reveals that to obtain the desired result a series of manipulations
on data have to be performed. They include3:

• obtaining data (from different sources and in different formats),
• integrating data (into a common ecosystem for further analysis),
• filtering data,
• data enrichment (i.e., improving data or extending them with additional semantic

information);
• visualization,
• queries.

Our goal is to provide a common space for performing such manipulations on data and
to store them for further execution on future data. We use the galaxy metaphor to rep-
resent such spaces. Each galaxy can represent several logically bound manipulations on
data (like in the example above). In the next section we define data galaxies and their
components (stars, planets, etc.). Then we mention several use cases and map them to the
galaxy metaphor; this shows the necessity and sufficiency of all the galaxy components
we have defined. Afterward we show how data galaxies can be implemented by means
of the transformation-driven architecture, which is a system-building approach that uses
models and model transformations at runtime. Finally, we discuss third-party tools that
can be incorporated within data galaxies to perform manipulations on data using the
capabilities of those tools.

1. Data Galaxies

First, we explain the technical space concept as a space for storing data and providing
specific tools for manipulating data. Then, we define data galaxies and their components.
Finally, we describe the life cycle of galaxies.

1.1. Technical Spaces

In 2002 I. Kurtev, J. Bézivin and M. Aksit have made an observation that there are mul-
tiple technologies that organize data into three levels of abstraction [2,3,4]. Data them-
selves lay at Level 1 (they are called a model). The description of data (or, the language,
in which data are described) is called a metamodel (laying at Level 2) The language

3Discussions within the project “Scenario based semantic and graphical data processing technology”. Simi-
lar manipulations with data are discussed under the data journalism topic [1].

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation236

Table 1. Some technical spaces and their meta-levels.

Technical space Model Metamodel Meta-metamodel

Relational database Database rows ER-model (schema) System tables

RDF/OWL OWL individuals OWL classes OWL DL (or another
OWL variant)

MOF-like model (in XMI or
other format [5])

metamodel (in XMI
or other format)

MOF (or similar
standard, e.g., ECore)

[6,7]

XML XML document [8] XML schema (.xsd) XML meta-schema
(XSD.xsd)

Spreadsheet rows of a spreadsheet
document

sheet and column
titles, cell types

document format
(e.g., Excel or

LibreOffice Calc)

for describing metamodels is a meta-metamodel (Level 3). A meta-metamodel is usu-
ally able to describe itself. Table 1 lists some technical spaces and the corresponding
meta-levels.

We use the term repository to denote a store, where technical spaces store their
data. Usually, model and metamodel are stored, while the meta-metamodel is fixed and
considered to be known in advance. One technical space may have multiple repositories
available. For instance, there are numerous database management systems from SQLite
to Oracle. OWL ontologies can be stored in OWL files (in XML format), as RDF triples,
or in some semantic repository such as StarDog, Sesame, Virtuoso, OWLIM, OWL API,
or Apache Jena 4. MOF-like models can be stored in the ECore format [7], or in reposito-
ries such as CDO5, MetaMart Metadata Repository6, and JR [9]. To find out more about
technical spaces and different repositories within them, refer to our publication on model
repositories [4].

Technical spaces are not just three meta-levels and different repositories. J. Bézivin
and I. Kurtev explain [3]:

“A technical space is a working context with a set of associated concepts, body of
knowledge, tools, required skills, and possibilities. Apparently, there are human re-
lated components in this definition since most technologies have emerged in a given
community that has knowledge, performs research, and even may have dedicated
conferences. In addition, a technology allows creation and manipulation of artifacts.”

Thus, one technical space may have a more convenient data format, while other
technical spaces may have useful tools to perform manipulations on data, but the data
need to be transformed to the appropriate format. Besides, while there may be several
tools in different technical spaces providing the same functionality, the user may have
skills of using a particular tool or knowledge in one particular technical space. This
encourages us to use the best from different technical spaces by combining them. Data
galaxies is our attempt to define a common space for integrating data from different
technical spaces and for performing manipulations of those data.

4http://stardog.com/, http://www.openrdf.org/, http://virtuoso.openlinksw.com/dataspace/
doc/dav/wiki/Main/, http://www.ontotext.com/owlim, http://owlapi.sourceforge.net/, http://
jena.apache.org/

5Connected Data Objects, http://www.eclipse.org/cdo/
6http://www.infolibcorp.com/metadata-management/software-tools/metadata-repository

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation 237

Figure 1. A data galaxy example. Bigger circles are stars associated with data repositories. Smaller circles are
planets that provide visualizations and editors for the data from the stars. Planets have atmospheres, which are
affected by data filters (parallelograms). Arrows are stellar winds that perform manipulations on data resulting
in creation of new stars

1.2. The Data Galaxy Concept

By data galaxy we mean an interactive executable configuration of data storages (repos-
itories) and manipulations with them. Figure 1 illustrates that. Among all the objects that
exist in astronomical galaxies, for the purpose of our metaphor we concentrate on stars,
planets, and stellar winds (star dust) within interstellar medium. Each star (a big circle)
is associated with some repository from some technical space. The same repository may
be referenced by multiple stars (this might be useful in certain cases).

Arrows describe the process of transferring data from one or more stars into an-
other star, while performing some manipulations on them (e.g., copy a subset of data,
merge two planets, replace certain data, etc.). This resembles how stars produce and dis-
perse stellar winds, where dust particles reside, which can be used to produce new stars.
Hence, we call the arrows stellar winds. For the sake of simplicity, each stellar wind
has exactly one target star.. If still two target stars are required, two stellar winds can be
involved. Stellar winds have direction that describes the flow of data, while performing
manipulations. Since new manipulations can be performed after previous manipulations,
stellar winds cannot form cycles. Thus, in a particular data galaxy, stars and stellar winds
describe a directed acyclic graph (DAG).

Certain stars may have planets around them that allow the user to “touch” the data
from the corresponding star. Planets are represented by certain plug-ins or external tools
for visualizing, editing and querying data (we use the common word visualization to
denote the functionality provided by planets). For instance, an OWL ontology can be
edited either by the Protégé tool, or by means of the OWLGrEd tool (such tools are
planets in our metaphor)7. Data containing graph-like structure can be visualized by
means of the Social Network Analysis tool (SNA) or Tom Sawyer Perspectives8. Tabular
data can be visualized by means of Microsoft Excel, LibreOffice Calc, Data Wranger, or
OpenRefine.

7http://protege.stanford.edu/, http://owlgred.lumii.lv/
8http://sna.lumii.lv/, https://www.tomsawyer.com/products/perspectives/

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation238

We may think that the data from stars is caught by planets like energy from real stars
is consumed by planets. To filter the radiation received from the stars, real planets use
atmospheres. Similarly, in data galaxies planets also have atmospheres that are driven
by data filters. Each filter can affect atmospheres of multiple planets (e.g., Filter 1 in
Figure 1), thus, filters are actually cross-filters. A planet using a filter can display some
GUI that allows the user to change the filter (e.g., to change the minimum and maximum
boundaries for the data). This change can be used to alter the filter. Then the data galaxy
synchronizes all the planets using that filter.

Filters can be also attached to stellar winds to guide them how new stars should be
created. In this case, a filter is taken into a consideration when the corresponding stellar
wind is executed (see Filters 2 and 3 in Figure 1).

In Astronomy, stars are classified into different types according to their luminosity
effects and spectra. Similarly, each star in a data galaxy has its own type corresponding to
the type of the repository that may be associated with that star (e.g., a relational database
or an OWL ontology). Planets have also types corresponding to plug-ins or tools that are
associated with them. The types of stellar winds correspond to types of data manipula-
tions to be performed (e.g., merge). Each particular star, planet, or stellar wind can have
a configuration (not shown in Figure 1) specific to the corresponding type. For instance,
a star of the relational database type needs to know the database URL along with the
user name and the password. An RDB2OWL transformation (stellar wind) requires a
configuration file that describes how to map the database to the ontology. The SNA tool
(a planet for visualizing graphs) needs to know how to map data columns to source and
target vertices of the graph.

Since there can be numerous star types, planet types, and stellar wind types, the
data galaxy application maintains the list of all these types. An out-of-box data galaxy
application would contain certain predefined types, while other types could be developed
by third-parties and attached to the galaxy application later. Some of these types can be
adapters for calling external tools. The data galaxy application can be implemented in
a way that allows new types to be registered at runtime. This would allow the user, for
example, to configure a stellar wind and then use this configuration as type when creating
a new stellar wind.

1.3. The Galaxy Life Cycle

Data galaxies are interactive. The user can connect to a new data source (repository)
by creating a new star, or to re-connect an existing star to some other repository of the
same type (the user may be asked for a star configuration). Then the user can explore/edit
the data by introducing one or more planets. Afterward he can choose a source star
and launch some stellar wind from it to obtain a new star with derived (refined) data.
For instance, the user can choose to copy star data to a new star of different type (the
“copy” stellar wind would ask for the target star type and its configuration). All the stars,
planets, stellar winds, filters, and their configurations are stored in a galaxy for further
re-execution on other data.

Data galaxies can be used in two modes. We have just described the designer’s
mode, where the user configures galaxies. The designer is an advanced user who is able
to configure the whole galaxy. While prototyping, he can adjust all galaxy components
(e.g., reconnect data to stars, and reconfigure stellar winds and filters) and also acti-

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation 239

vate/deactivate planets and filters. The second mode is limited mode, where the galaxy is
fixed and certain galaxy components are hidden. The user is able to configure just some
of the components and view only some planets. For instance, the user may be allowed
to specify the database name and credentials for a particular star to specify the source
data. Also, the user can be allowed to modify some filters and view the resulting data
through some final planets that have been left visible by the designer. All other compo-
nents (planets, stars, stellar winds, and filters) are a “black box” in limited mode. The
information on which components are hidden and which active/inactive is called a run
configuration.

In both modes (designer’s and limited), a special command (button) “Run” is avail-
able. This command traverses all the stars of the galaxy and executes the corresponding
stellar winds in the topological order (since stars and stellar winds form a directed acyclic
graph, this is possible). Thus, when the user reconfigures something (e.g., chooses an-
other data source), he can launch the “Run” command to update the galaxy and to see the
updated visualizations. The “Run” command takes a run configuration as an argument.

2. Use Cases

In this section we describe several use cases and map them to data galaxies.
Analyzing server log files to detect web-based attacks. Assume we have a web

server that writes textual log files about web queries containing the port number, the
source IP address, etc. Certain patterns in these log files may indicate an intrusion, e.g.,
when many different ports (say, > 1000) are being accessed (scanned) from the same
IP address, or when too many queries from the same IP address are being issued in a
short period of time. In this use case we want to detect such potential intrusions. For
that, we create a data galaxy with two stars. The first star corresponds to a log-file. This
star emits a stellar wind that corresponds to a Python program that generates a CSV file9

and associates it with the second star. Then we can attach two planets to that star. The
first planet would correspond to a notification engine that sends an e-mail (or an SMS) to
the administrator when it detects suspicious activity (e.g., when the number of scanned
ports exceeds the threshold of 1000). The second planet corresponds to the SNA tool,
which is able to load a graph from CSV and visualize it. Thus, the server administrator
can explore and filter the log data within SNA (e.g., to see only queries that cover at least
1000, or 64000 ports), and to make a decision how to resist the attack, if any. Now we
can introduce two run configurations. The first configuration is intended to be used in
a batch mode, i.e., to launch the galaxy automatically (to invoke its “Run” command)
every 5 minutes10. In this run configuration, the notification planet is active, but the SNA
planet is inactive (since SNA is an interactive tool). When the administrator receives a
notification, he uses the second run configuration, where SNA is active. Thus, he can
launch SNA to discover the problem and to make a decision.

Detection of unfair commercial practices. Assume that State News Agency has
published information that Company C won certain government procurement. We want
to check, whether there are certain cognate relations between individuals in the ruling
party and Company C that could affect the results of the procurement. Assume that we

9CSV stands for Comma-Separated Values; a textual file, where data in each row are delimited by commas.
10This can be done by configuring some job scheduling service (e.g., cron in UNIX).

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation240

have access to certain databases, e.g., State Individuals Register (SIR), State Business
Register (SBR), Political Party Register (PPR), State Procurement Register (SPR), and
Party Financing Database (PFD). We can create a data galaxy with stars for the data
from these databases (we can connect to a database directly, or export the required data
to some data format and associate these exported data with a star, — this is determined
by a star type). Then we can create a stellar wind that would transform the data from
SIR to the RDF/OWL technical space using RDB2OWL or R2RML [10,11]. Then we
can define certain rules (e.g., defined in Semantic Web Rule Language, SWRL [12]) to
specify how to infer cognate relations (e.g., if A is a child of B and B is a child of C then
A and C are relatives, etc.). A stellar wind taking these rules can infer which persons are
relatives and put the inferred data into a new star (this is a kind of data enrichment). Using
this information as well as information from SBR and PPR we can infer (by another
stellar wind manipulation) which companies may be potentially related to certain parties.
Then we can just check whether the money flows between SPR and PFD correlate with
cognate relations found in the last step. Finally, we can summarize the results and put
them into an Excel file by an appropriate stellar wind, which would create a new star (for
the generated .xls) and attach a new Excel planet for viewing.

Going to opera. Assume the user wants to visit the opera theater. He goes to the
opera web-site, where for each month he can find a table of all the productions to be per-
formed in that month. The user is interested in productions to be held during either this
month or the next two months. He has also certain restrictions: on the price (preferably
less than 20 euro, but in certain cases he can consider the price up to 30 euro) and on the
day of week (the user is always busy on Tuesday and Saturday evenings). Moreover, the
user wants to visit a production that is accompanied by an orchestra and that receives the
rating at least 4.5 from the online reviewers. For that, the user can create three stars cor-
responding to the three months. The stars would contain links to the corresponding opera
web-pages with tables. For each of these stars, a HTML parsing stellar wind is launched
that extracts the table and puts it into some database. Then all three databases are merged
and for each production the currently available minimum and maximum ticket prices are
appended from the ticket service web-page. Then the user can attach a planet (e.g., a vi-
sualizer for data tables) and some predefined filters: a range filter on the maximum price
column (to specify the price below 20 euro), the value filter on the day of week column
(to specify allowed values), a string value filter that checks whether the conductor col-
umn is not empty (to specify the productions accompanied by an orchestra), and a range
filter to specify the minimum value of 4.5 for the rating column. The price filter can be
adjusted, if the user decides to modify the price range.

In the first use case there are two users: the designer (who also has Python program-
ming skills) and the administrator (who just executes the predefined galaxy in one of its
two configurations). The other two use cases have just one user that acts as a designer.

It is also possible to define galaxies for the use cases mentioned in the introduction
(we leave that as an exercise to the reader). Many other use cases can be represented by
galaxies, too. Yet, the data galaxy concept stays simple: it is just a directed acyclic graph
with certain planets and filters attached.

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation 241

Figure 2. A technical view on the Transformation-Driven Architecture

3. Implementing Data Galaxies

Since 2008 we have been working on the Transformation-Driven Architecture, TDA,
which is a software system building approach that uses models (from different technical
spaces) and model transformations at runtime [13,14]. Although data galaxies can be
implemented in various ways, TDA comes with many features that are essential for data
galaxies.

3.1. TDA Features

In TDA, components implementing useful functionality for the application logic are
called engines. Usually, engines provide graphical presentations and useful services
[15,16,17,18]. Business logic is implemented by model transformations that “drive” the
engines (Figure 2). TDA factors out many features that are useful for data galaxies:

• TDA has a built-in event/command mechanism, which ensures the communica-
tion between engines and transformations via special objects in the repository
called events and commands;

• the TDA multi-repository mechanism can be used to mount multiple repositories
from different technical spaces and to represent them as one big repository (for
each repository type there must be an adapter for repository) [4]; this is useful to
attaching data to stars;

• there is a universal repository access API (RAAPI) for different repositories;
RAAPI can be used as an abstraction layer to perform certain manipulations on
data regardless of the underlying technical space, e.g., copying all data from one
repository to another;

• since interface metamodels of engines are programming-language neutral, en-
gines and transformations can be written in different programming or transfor-

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation242

11
*1

11

source * consumer *
target 1 producer 1..*

1 1
* * **

1 1

*

visibleComponent **

mustConfigureComponent *

deactivateComponent *

0..1

1

Figure 3. Galaxy Metamodel

mation languages (still, each such language needs an adapter); thus, planets and
stellar winds can be written using different programming and/or transformation
languages;

• TDA contains a universal built-in undo/redo mechanism that can be useful, when
prototyping data galaxies.

3.2. Implementing Galaxy Components

Data galaxies themselves are implemented in Galaxy Engine that displays galaxies and
allows users to design and run them. Galaxy Engine describes all the components ac-
cording to Galaxy Metamodel (Figure 3). It contains all four types of galaxy components
(GalaxyComponent subclasses). The Star component is attached to the StarData class
representing data repositories. Since each star can be re-connected to a different reposi-
tory, the starDataType attribute specifies one or more possible types of such repositories
(types are associated with star data, since stars themselves are fixed, but their data are
not; we talk on types below). The emptyOnInit attribute specifies whether the attached
existing repository has to be emptied (non-existing repositories are always mounted as
empty). When the user needs to create a star, Galaxy Engine issues a ConfigureStar com-
mand that asks for a star data type (if more than one) and calls the corresponding trans-
formation that is used to configure the star (the type specific configuration can be defined
in the type class, a StarData sublcass). The InitializeStar command calls a star data type
specific transformation that initializes the star by mounting the required repository.

Planets also have two commands: a ConfigurePlanet command calls the planet
type specific transformation that configures the corresponding planet, while the Visual-
izePlanet command calls the transformation that visualizes the given planet (transfor-
mations can attach TDA engines, which can represent certain tools or plug-ins). Stellar
winds have two similar commands: ConfigureStellarWind is used to configure the given
stellar wind, while EmitStellarWind launches the transformation implementing the stel-
lar wind manipulation. The CrossFilter class can issue just one command Configure-
CrossFilter that can provide certain graphical dialog to configure the filter. When a filter
is changed from the outside (e.g., from a planet using that filter), a command Synchro-
nizeCrossFilterCommand must be issued. Then other planets and stellar winds using the
same filter are notified about the change by means of the CrossFilterChangedEvent.

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation 243

Figure 4. Metamodel of galactic types

The RunConfiguration class specifies run configurations. Among specifying a set of
visible components (others will be invisible) and a set of inactive components (they are
excluded from the galaxy when executing the “Run” command), a set of components
that the user must re-configure prior launching the “Run” command can be specified
(see the mustConfigureComponent association). For instance, the user may be required
to configure certain stars specifying the initial data. Other visible components can be
optionally re-configured by the user, too.

3.3. Types of Components Used Within Data Galaxies

Star data, planets, stellar winds and filters are of some type (“galactic type”). By conven-
tion, these types are subclasses of the corresponding classes in Figure 3. Since transfor-
mations that are called to execute galaxy commands (e.g., ConfigurePlanet or EmitStel-
larWind) differ from type to type, they are assigned to these galactic types.

Figure 4 shows the metamodel of galactic types. Each type has two URIs for speci-
fying transformations for configuring the corresponding component11: configurationURI
is used in the designer mode while limitedConfigurationURI is used in the limited mode
since limited mode may involve certain restrictions (which might be configured in the
designer’s mode). StarDataType and StellarWindType have the additional transformation
URIs for initializing a star and for emitting a stellar wind. The PlanetType class has two
URIs for specifying visualization transformations: one is for the designer’s mode while
the other is for the limited mode (the visualization in the limited mode may show less,
e.g., hide certain internal parameters).

4. Related Work

When J. Bézivin et al. proposed the technical space concept, they proposed also the
projector concept — a transformation between two technical spaces. For instance, a MOF
model can be transformed to XML and vice versa according to the XMI standard [5].
Such projectors can be used within data galaxies as stellar winds connecting star data
from different technical spaces.

11In TDA, transformation name is a URI string consisting of two parts: the adapter name and the adapter-
specific transformation (program) name, e.g., “python:MyManipulation.py”. When a galaxy command is being
issued, Galaxy Engine finds the assigned transformation URI and asks TDA to launch that transformation and
to pass the command object as an argument.

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation244

There are numerous tools that can be used to manipulate and visualize data. Open-
Refine, perhaps, is the most powerful tool that tries to cover almost the full data manip-
ulation cycle12. It can process numerous data formats (and supports extensions), but fo-
cuses on tabular data representations. In the data galaxy world it can be a powerful planet
for visualizing and refining tabular data. DataWrangler is another tool with multiple re-
fine capabilities [19]. This tool is able to store the history of manipulations on data in the
form of a script for further re-execution. In the data galaxy world, DataWrangler can be
used to configure stellar winds corresponding to such scripts.

Crossfilter is a JavaScript library for filtering and visualizing data according to the
given dimension. Freebase parallax is a browser interface for Freebase that is able to
navigate from a set of data objects to a set of data objects, filter data, and plot charts.
Sgvizler is a JavaScript library for the StarDog database being able to visualize results
of SPARQL queries13. Facet Graphs is an approach for simplifying semantic queries for
the end user [20]. All this software can be used as planets for the appropriate stars.

Data transformation languages such as RDB2OWL, R2RML, or XSLT can be used
within stellar winds [10,11,21].

The import.io tool14 is a tool for extracting data from web pages. The resulting data
form a table. The tool has to be “trained” first. In the data galaxy world this tool can be
considered a stellar wind that takes as input HTML data associated with some star. The
“training” process can be launched during stellar wind configuration.

Popular spreadsheet processors like Microsoft Excel and LibreOffice Calc can be
used as planets, as star data15, or as a stellar wind executing VBA16 script. Other third-
party tools can also find their way to the data galaxy world.

Data galaxies can be viewed as a new kind of data ecosystems. Unlike existing
ecosystems like Marinexplore and DataSift17 that are tied to a particular domain (marine
data, social data), our data galaxy approach allows the user to join data from different
domains as well as to attach additional visualizations (not just predefined ones).

The Extract-Transform-Load (ETL) approach as well as application-centric hubs in
artifact-centric business process modeling also resembles data galaxies [22,23]. How-
ever, these approaches focus just on data and their transformations, while data galaxies
involve also visualization aspects implemented via planets and filters.

5. Conclusion

We presented data galaxies — a space, where data from different technical space can be
mounted, manipulated, and visualized. This encourages using the best of available tools
and technologies by joining them into a data galaxy. We believe that data galaxies provide
the same environment for data from different technical spaces as Excel for tabular data.
We are looking forward to implementing the data galaxy application as well as launching
data galaxies in the web (in the style of Google Docs).

12http://openrefine.org/
13http://square.github.io/crossfilter/, https://code.google.com/p/freebase-parallax/, http://

dev.data2000.no/sgvizler/
14https://import.io/
15The cell data can be accessed via Automation API in Excel or UNO API in LibreOffice.
16Visual Basic for Applications; LibreOffice Calc supports other scripting languages as well
17http://marinexplore.com/, http://datasift.com/

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation 245

References

[1] Rogers S. Data journalism at the Guardian: what is it and how do we do it? [WWW] http://www.
theguardian.com/news/datablog/2011/jul/28/data-journalism (accessed 06.05.2014).

[2] Kurtev I., Bézivin J., Aksit M. Technological spaces: An initial appraisal. In: Proceedings of the 4th
International Symposium on Distributed Objects and Applications, 30 October - 1 November 2002,
Irvine, USA. Springer-Verlag, 2002.

[3] Bézivin J., Kurtev I. Model-based technology integration with the technical space concept. In: Metain-
formatics Symposium, 2005.

[4] Kozlovics S. The orchestra of multiple model repositories. In: SOFSEM 2013: Theory and Practice of
Computer Science, 26-31 January 2013, Špindlerův Mlýn, Czech Republic. Springer Berlin Heidelberg,
2013. 503–514. (LNCS; 7741).

[5] Object Management Group. OMG MOF 2 XMI Mapping Specification, Version 2.4.1 [WWW] http:
//www.omg.org/spec/XMI/2.4.1/ (accessed 06.05.2014).

[6] Object Management Group. OMG Meta Object Facility (MOF) Core Specification Version 2.4.1
[WWW] http://www.omg.org/spec/MOF/2.4.1/ (accessed 06.05.2014).

[7] Steinberg D., Budinsky F., Paternostro M., Merks E. EMF: Eclipse Modeling Framework, 2nd Edition.
Addison-Wesley, 2008. 744 p.

[8] Extensible Markup Language (XML) 1.1 (Second Edition) [WWW] http://www.w3.org/TR/
xml11/ (accessed 06.05.2014).

[9] Opmanis M., Čerāns K. Multilevel data repository for ontological and meta-modeling. In: Selected
Papers from the Ninth International Baltic Conference, DB&IS 2010. Amsterdam: IOS Press, 2011.
125–138. (Frontiers in Artificial Intelligence and Applications; 224).

[10] Būmans G., Čerāns K. RDB2OWL: a practical approach for transforming RDB data into RDF/OWL.
In: Proceedings of the 6th International Conference on Semantic Systems (I-SEMANTICS ’10), 1-3
September 2010, Graz, Austria. New York, NY: ACM, 2010. 25:1–25:3.

[11] R2RML: RDB to RDF Mapping Language [WWW] http://www.w3.org/TR/r2rml/ (accessed
06.05.2014).

[12] SWRL: A Semantic Web Rule Language [WWW] http://www.w3.org/Submission/SWRL/ (ac-
cessed 06.05.2014).

[13] Barzdins J., Kozlovics S., Rencis E. The Transformation-Driven Architecture. In: Proceedings of
DSM’08 Workshop of OOPSLA 2008, 19-20 October 2008, Nashville, TN, USA. University of Alabama
at Birmingham, 2008. 60–63.

[14] Kozlovics S., Barzdins J. The Transformation-Driven Architecture for interactive systems. Automatic
Control and Computer Sciences, 2013, 47(1/2013), 28–37.

[15] Kozlovics S. A Dialog Engine Metamodel for the Transformation-Driven Architecture. In: Scientific
Papers, University of Latvia, 2010, 756, 151–170.

[16] Kozlovics S. Calculating The Layout For Dialog Windows Specified As Models. In: Scientific Papers,
University of Latvia, 2012, 787, 106–124.

[17] Barzdins J., Cerans K., Kozlovics S., Rencis E., Zarins A. A Graph Diagram Engine for the
Transformation-Driven Architecture. In: Proceedings of MDDAUI 2009 Workshop of International Con-
ference on Intelligent User Interfaces 2009, 8 February 2009, Sanibel Island, Florida, USA. 29–32.

[18] Kozlovics S. A universal model-based solution for describing and handling errors. In: Perspectives in
Business Informatics Research. Springer Berlin Heidelberg, 2011. 190–203. (LNBIP, 90).

[19] Kandel S., Paepcke A., Hellerstein J., Heer J. Wrangler: Interactive visual specification of data transfor-
mation scripts. In: Proceedings of CHI’11. New York, NY: ACM. 3363-3372.

[20] Heim P., Ertl T., Ziegler J. Facet graphs: Complex semantic querying made easy. In: The Semantic Web:
Research and Applications. Springer Berlin Heidelberg, 2010. 288–302. (LNCS; 6088).

[21] XSL Transformations (XSLT), Version 3.0 (a working draft) [WWW] http://www.w3.org/TR/
xslt-30/ (accessed 06.05.2014).

[22] Kimball R., Caserta J. The Data Warehouse ETL Toolkit: Practical Techniques for Extracting, Cleaning,
Conforming, and Delivering Data. Wiley, 2004. 528 p.

[23] Hull R., Narendra N., Nigam A. Facilitating workflow interoperation using artifact-centric hubs. In:
Service-Oriented Computing. Springer Berlin Heidelberg, 2009. 1–18. (LNCS, 5900).

S. Kozlovics and P. Rucevskis / Data Galaxies: A Common Space for Data Manipulation246

